3.456 \(\int \frac {\sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx\)

Optimal. Leaf size=85 \[ \frac {2 b^2 \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {b \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {\tan (c+d x)}{a d} \]

[Out]

-b*arctanh(sin(d*x+c))/a^2/d+2*b^2*arctan((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(1/2))/a^2/d/(a-b)^(1/2)/(a+b)^
(1/2)+tan(d*x+c)/a/d

________________________________________________________________________________________

Rubi [A]  time = 0.13, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2802, 12, 2747, 3770, 2659, 205} \[ \frac {2 b^2 \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 d \sqrt {a-b} \sqrt {a+b}}-\frac {b \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {\tan (c+d x)}{a d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + b*Cos[c + d*x]),x]

[Out]

(2*b^2*ArcTan[(Sqrt[a - b]*Tan[(c + d*x)/2])/Sqrt[a + b]])/(a^2*Sqrt[a - b]*Sqrt[a + b]*d) - (b*ArcTanh[Sin[c
+ d*x]])/(a^2*d) + Tan[c + d*x]/(a*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2659

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[(2*e)/d, Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 2747

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[b/(
b*c - a*d), Int[1/(a + b*Sin[e + f*x]), x], x] - Dist[d/(b*c - a*d), Int[1/(c + d*Sin[e + f*x]), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2802

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[(b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n + 1))/(f*(m + 1)*(b*c - a*d)*(a^2 -
 b^2)), x] + Dist[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n
*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n
+ 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !
(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{a+b \cos (c+d x)} \, dx &=\frac {\tan (c+d x)}{a d}-\frac {\int \frac {b \sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac {\tan (c+d x)}{a d}-\frac {b \int \frac {\sec (c+d x)}{a+b \cos (c+d x)} \, dx}{a}\\ &=\frac {\tan (c+d x)}{a d}-\frac {b \int \sec (c+d x) \, dx}{a^2}+\frac {b^2 \int \frac {1}{a+b \cos (c+d x)} \, dx}{a^2}\\ &=-\frac {b \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {\tan (c+d x)}{a d}+\frac {\left (2 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{a+b+(a-b) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^2 d}\\ &=\frac {2 b^2 \tan ^{-1}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^2 \sqrt {a-b} \sqrt {a+b} d}-\frac {b \tanh ^{-1}(\sin (c+d x))}{a^2 d}+\frac {\tan (c+d x)}{a d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.38, size = 115, normalized size = 1.35 \[ \frac {-\frac {2 b^2 \tanh ^{-1}\left (\frac {(a-b) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {b^2-a^2}}\right )}{\sqrt {b^2-a^2}}+a \tan (c+d x)+b \left (\log \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (c+d x)\right )+\cos \left (\frac {1}{2} (c+d x)\right )\right )\right )}{a^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + b*Cos[c + d*x]),x]

[Out]

((-2*b^2*ArcTanh[((a - b)*Tan[(c + d*x)/2])/Sqrt[-a^2 + b^2]])/Sqrt[-a^2 + b^2] + b*(Log[Cos[(c + d*x)/2] - Si
n[(c + d*x)/2]] - Log[Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]) + a*Tan[c + d*x])/(a^2*d)

________________________________________________________________________________________

fricas [B]  time = 1.30, size = 382, normalized size = 4.49 \[ \left [-\frac {\sqrt {-a^{2} + b^{2}} b^{2} \cos \left (d x + c\right ) \log \left (\frac {2 \, a b \cos \left (d x + c\right ) + {\left (2 \, a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a^{2} + b^{2}} {\left (a \cos \left (d x + c\right ) + b\right )} \sin \left (d x + c\right ) - a^{2} + 2 \, b^{2}}{b^{2} \cos \left (d x + c\right )^{2} + 2 \, a b \cos \left (d x + c\right ) + a^{2}}\right ) + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) - 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}, \frac {2 \, \sqrt {a^{2} - b^{2}} b^{2} \arctan \left (-\frac {a \cos \left (d x + c\right ) + b}{\sqrt {a^{2} - b^{2}} \sin \left (d x + c\right )}\right ) \cos \left (d x + c\right ) - {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) \log \left (\sin \left (d x + c\right ) + 1\right ) + {\left (a^{2} b - b^{3}\right )} \cos \left (d x + c\right ) \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (a^{3} - a b^{2}\right )} \sin \left (d x + c\right )}{2 \, {\left (a^{4} - a^{2} b^{2}\right )} d \cos \left (d x + c\right )}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

[-1/2*(sqrt(-a^2 + b^2)*b^2*cos(d*x + c)*log((2*a*b*cos(d*x + c) + (2*a^2 - b^2)*cos(d*x + c)^2 + 2*sqrt(-a^2
+ b^2)*(a*cos(d*x + c) + b)*sin(d*x + c) - a^2 + 2*b^2)/(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2)) + (a^
2*b - b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) - (a^2*b - b^3)*cos(d*x + c)*log(-sin(d*x + c) + 1) - 2*(a^3 - a
*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c)), 1/2*(2*sqrt(a^2 - b^2)*b^2*arctan(-(a*cos(d*x + c) + b)/
(sqrt(a^2 - b^2)*sin(d*x + c)))*cos(d*x + c) - (a^2*b - b^3)*cos(d*x + c)*log(sin(d*x + c) + 1) + (a^2*b - b^3
)*cos(d*x + c)*log(-sin(d*x + c) + 1) + 2*(a^3 - a*b^2)*sin(d*x + c))/((a^4 - a^2*b^2)*d*cos(d*x + c))]

________________________________________________________________________________________

giac [B]  time = 0.64, size = 153, normalized size = 1.80 \[ -\frac {\frac {2 \, {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {a^{2} - b^{2}}}\right )\right )} b^{2}}{\sqrt {a^{2} - b^{2}} a^{2}} + \frac {b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right )}{a^{2}} - \frac {b \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right )}{a^{2}} + \frac {2 \, \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

-(2*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*
c))/sqrt(a^2 - b^2)))*b^2/(sqrt(a^2 - b^2)*a^2) + b*log(abs(tan(1/2*d*x + 1/2*c) + 1))/a^2 - b*log(abs(tan(1/2
*d*x + 1/2*c) - 1))/a^2 + 2*tan(1/2*d*x + 1/2*c)/((tan(1/2*d*x + 1/2*c)^2 - 1)*a))/d

________________________________________________________________________________________

maple [A]  time = 0.08, size = 134, normalized size = 1.58 \[ \frac {2 b^{2} \arctan \left (\frac {\tan \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (a -b \right )}{\sqrt {\left (a -b \right ) \left (a +b \right )}}\right )}{d \,a^{2} \sqrt {\left (a -b \right ) \left (a +b \right )}}-\frac {1}{a d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{d \,a^{2}}-\frac {1}{a d \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {b \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{d \,a^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+b*cos(d*x+c)),x)

[Out]

2/d*b^2/a^2/((a-b)*(a+b))^(1/2)*arctan(tan(1/2*d*x+1/2*c)*(a-b)/((a-b)*(a+b))^(1/2))-1/a/d/(tan(1/2*d*x+1/2*c)
-1)+1/d*b/a^2*ln(tan(1/2*d*x+1/2*c)-1)-1/a/d/(tan(1/2*d*x+1/2*c)+1)-1/d*b/a^2*ln(tan(1/2*d*x+1/2*c)+1)

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*b^2-4*a^2>0)', see `assume?`
 for more details)Is 4*b^2-4*a^2 positive or negative?

________________________________________________________________________________________

mupad [B]  time = 1.05, size = 324, normalized size = 3.81 \[ \frac {a^3\,\sin \left (c+d\,x\right )-a\,b^2\,\sin \left (c+d\,x\right )}{a^2\,d\,\cos \left (c+d\,x\right )\,\left (a^2-b^2\right )}-\frac {2\,a^2\,b\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )-2\,b^3\,\mathrm {atanh}\left (\frac {\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )}\right )+2\,b^2\,\mathrm {atanh}\left (\frac {a^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (b^2-a^2\right )}^{3/2}-2\,b^5\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}+3\,a^2\,b^3\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^3\,b^2\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}-a^4\,b\,\sin \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\sqrt {b^2-a^2}}{\cos \left (\frac {c}{2}+\frac {d\,x}{2}\right )\,{\left (a\,b^2-a^3\right )}^2}\right )\,\sqrt {b^2-a^2}}{a^2\,d\,\left (a^2-b^2\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + b*cos(c + d*x))),x)

[Out]

(a^3*sin(c + d*x) - a*b^2*sin(c + d*x))/(a^2*d*cos(c + d*x)*(a^2 - b^2)) - (2*a^2*b*atanh(sin(c/2 + (d*x)/2)/c
os(c/2 + (d*x)/2)) - 2*b^3*atanh(sin(c/2 + (d*x)/2)/cos(c/2 + (d*x)/2)) + 2*b^2*atanh((a^5*sin(c/2 + (d*x)/2)*
(b^2 - a^2)^(1/2) + 2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(3/2) - 2*b^5*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) +
3*a^2*b^3*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^3*b^2*sin(c/2 + (d*x)/2)*(b^2 - a^2)^(1/2) - a^4*b*sin(c/2
+ (d*x)/2)*(b^2 - a^2)^(1/2))/(cos(c/2 + (d*x)/2)*(a*b^2 - a^3)^2))*(b^2 - a^2)^(1/2))/(a^2*d*(a^2 - b^2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\sec ^{2}{\left (c + d x \right )}}{a + b \cos {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+b*cos(d*x+c)),x)

[Out]

Integral(sec(c + d*x)**2/(a + b*cos(c + d*x)), x)

________________________________________________________________________________________